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ABSTRACT

V

We solve the inviscid Euler equations in complicated geometries using a Cartesian

grid. This requires solid wall boundary conditions in the irregular grid cells near the

boundary. Since these cells may be orders of magnitude smaller than the regular grid

cells, stability is a primary concern. We present a new approach to this problem and

illustrate its use. ( } ? -

'The authors were supported in part by NSF Grants ASC-8858101 and DMS-8657319, AFOSR
Grant 86-0148, and DOE Grant DE-FG02-88ER25053. This work was also supported in part by
the National Aeronautics and Space Administration under NASA Contract No. NAS1-18605 while
the authors were in residence at the Institute for Computer Applications in Science and Engineering
(ICASE), NASA Langley Research Center, Hampton, VA 23665.

mmi



1 Introduction

In previous work [1], [6], [7], we have described a Cartesian grid method for the

inviscid Euler equations in arbitrary geometries. There are many advantages to be

gained from this approach. Grid generation is simplified, since we avoid the use of

(possibly multiblock) body-fitted grids, and we can use high resolution, highly efficient

solvers on regular grids over the bulk of the domain. This has led to renewed interest

in Cartesian grids in recent years, e.g., [3], [10]. One of the difficulties with Cartesian

grids is that they give insufficient resolution in certain regions such as leading edges.

This can now be overcome by Cartesian adaptive mesh refinement [1], [2].

The principal remaining difficulty in this approach is due to the essentially ar-

bitrary way that a Cartesian grid intersects the boundaries of the computational

domain. In particular, a solid wall boundary cutting through the grid creates irreg-

ular cells that may be orders of magnitude smaller than the regular cells away from

the boundary. For these irregular cells, special difference equations are needed that

maintain stability and accuracy, and satisfy the solid wall boundary conditions of no

normal flow.

In this work, we present an improved method for the small boundary cells. We

use an explicit, finite volume formulation that computes fluxes at cell edges on the

regular part of the domain. We would like to define fluxes at the edges of the irregular

cells in such a way that the method is stable even with very small boundary cells,

using a time step based on the regular grid cells away from the boundary. The CFL

condition requires that the numerical method allow information to propagate at least

as quickly as the underlying differential equation. In the present context this means

that we must define fluxes at the sides of our irregular cells based on more than just

the neighboring cell values.

In our previous work, we have used a wave propagation approach in defining these

fluxes. Here we propose an alternative method that has some advantages over the

wave propagation approach. In particular, the wave propagation method is subject

to intermittent instabilities due to two-dimensional effects that are not clearly under-

stood. The new method has a cancellation property in two dimensions that appears to

give better stability properties. Moreover, the computational geometry is simplified

in the new approach. The fluxes are defined in terms of weighted averages of nearby

cell values. These weights may be calculated as a preprocessing step on any fixed grid

and need not be repeatedly calculated. In the previous approach the weights depend

on the flow variables and a certain amount of computational geometry was required



near the boundary in every time step.

We consider the inviscid Euler equations of gas dynamics in two space dimensions,

Ut + f(U) . g(u) = 0 (1.1)

where

[ PUi PU2 ]
pu1  , jUj- pU2 +pJ pUUU = 29 + p (1.2)

pE u (pE + p) U 2(pE + p)

Here (U1, U 2 ) represents the velocity, E is the total energy per unit mass, and p is the

pressure, which is related to the other variables by the equation of state. We assume

a 7y-law gas, so that

p= ('y - l)(pF - P(U +' )). (1.3)

At a solid wall boundary we require that the component of velocity normal to the

wall be zero.

In one space dimension the system reduces to

U, + f(u) = 0 (1.4)

where u = (p, pv, pE) and f(u) = (pv, pv 2 + p, v(pE + p)), with v = ul the velocity.

The boundary conditions become v = 0 at a solid wall.

2 A one-dimensional example

In order to illustrate this approach we begin with a one-dimensional model problem,

the one-dimensional Euler equations for x > 0 with a solid wall at x = 0. We take a

grid with cell interfaces at the points

X0 0

x= h'

,=1h'+ jh for j=2, 3,.

Here h is a uniform grid spacing and h' < h. the grid is uniform except for one small

cell near the boundary (see Figure 1). We use a conservative method in the form

U!- = U17- -1.A. -kl, j = 0, 1 (2.5)
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Figure 1: One dimensional grid with one irregular cell adjacent to the wall.

Here hj is the width of the jth cell, so in our case we have h0 = h' and hj = h for

j>0.

For simplicity we restrict our attention to Godunov's method on the regular por-
tion of the grid, although the ideas we propose can be extended to higher order

methods as well. In Godunov's method we take

= f (U(U.. 1, (7)) (2.6)

where u*(u, uR) represents the solution to the Riernann problem with left and right

states uL and uR, evaluated along x/t = 0. Although a rigorous stability proof is not

available for systems of equations, in practice this method is always stable provided

the CFL conditicn
' _ h (2.7)

I <1i
is satisfied, where A,,,. is the maximum wave speed. We will assume that our time

step k is chosen so that the condition (2.7) is satisfied relative to the uniform h. We

will use the flux (2.6) for j = 2, 3, ... , i.e., at all interfaces where the cell on both

sides is regular. Our task is to define fluxes F7j for j = 0, 1 so that we maintain

stability (and accuracy) with this time step even if h' < h.

First suppose h' = h. Then we can use the Godunov flux (2.6) also at j = 1.

At the wall we use the well-known observation that the solution to the boundary

value problem can be obtained by ignoring the wall and extending the computational

domain to the whole line -oo < x < oo, if we take data uo(x) for x < 0 equal to

P(X,0) = P(-=,0)

v(z,0) = -v(-,0) for x < 0

p(X,O) = P(-,,0).

We will denote this "reflection" of the data (in which the velocity is negated) by the

operator 1Z, so that for qhorthan-d we can wrte

u(x,0) = IR(u(-x,0)) for x < 0.
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With this extended data, the solution continues to satisfy u(x, t) = T(,(-x, t)) also

for t > 0 and in particular the boundary condition u(O, t) = 0 is automatically

satisfied. This suggests that we obtain a flux at the wall by solving a Riemann

problem with left and right states

U = R(Uo), u =R U0

in each time step to obtain

Fo = f(u*(R(Uo), Uo).

(For brevity we will leave off the superscript n in generai.) Note that the density

and energy components of this flux will be zero since the velocity component of u* is

zero at the wall. There will only be a momentum flux at the wall due to the pressure

there, as expected physically.

If h' < h we could attempt to use this same formula to define F0 but we would

find that it is unstable unless the CFL condition
k _.._ < 1 (2.8)

h' -(28

is satisfied. This will place an unreasonable restriction on k if h' < h.

This instability is caused by the fact that the boundary flux F0 is based on the data

U0 alone. If the CFL condition (2.8) is satisfied, then it is only this data that affects

the flux at the wall over the time step. However, when (2.8) is violated the value U1

should also affect the flux at the wall, and ignoring this effect leads to instability.

In a "large time step" approach we increase the stencil of the method, meaning we

allow more data points to come into the computation of each flux, and hence retain

stability. One way to achieve this is by a wave propagation approach. The solution of

the Riemann problem at each cell interface consists of three waves propagating away

from the interface. If (2.8) is satisfied then these waves remain in the cells bordering

the interface during the entire time step and hence affect the solution only in these

cells. If (2.8) is violated then the waves may affect cells further away. Implementing

Godunov's method in terms of this wave propagation approach, allowing waves to

affect more than just the adjacent cell, gives a large time step generalization that

remains stable for much larger time steps[5]. In the present context this allows us

to reduce h' without reducing the time step k. Waves from the boundary Riemann

problem cross the interface at x, and affect U1 as well as U0. Waves from the interface

at X1 may reach the boundary. These waves reflect off the boundary and the reflected
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wave affects the value U0 and perhaps also U1 if the reflected wave reaches the ccll

interface at x, during the timc step.

A more detailed description of this procedure may be found in [7]. A natural

extension to two space dimensions gives one method to deal with small cells near

the boundary, as described in [1], [6], [7]. In one dimension this works very well

but in two dimensions occasional stability problems have still been observed due to

multidimensional effects.

The new approach. Our new approach to the small cell problem can also be

illustrated with the one-dimensional problem described above. We again use the

method (2.5) with Godunov fluxes (2.6) for j = 2, 3, .... For j = 0 and j = 1 we

define fluxes in a similar manner but with a different choice of states uL and uR in the

Riemann solver. Recall that in a naive attempt to use Godunov's method regardless

of the size h' of the small cell we would take left and right states

(Uo) u = U0  (2.9)

U= Uo U= U1. (2.10)

To maintain stability when h' is small, we need to allow data from additional grid

cells to affect the left and right states at each of these interfaces. Recall that the

method is assumed to be stable with our choice of k and h on the regular portion of

the grid. This suggests that we should define uj' by taking the average value of U

over an interval of length h to the left of the interface xj and define u by taking the

average value of U over an interval of length h to the right of xj.

For example, at xo = 0 (the wall) we set

UR= 1 h'U (h - h')Ul) (2.11)

If we view the grid values as defining a piecewise constant function with values U

in the jth cell, then (2.11) is the average value of this function over the interval

0 < x < h. Note that if h' = h (the grid is completely regular) then (2.11) reduces

to u-' = Uo as expected for Godunov's method. Recall that in Godunov's method

we take u' = 7IZ(Uo) = IZ(ug) to impose the boundary condition v(0, t) = 0. This

suggests that more generally we take

U0 = 1?.(uO) (2.12)

where u- is defined by (2.11). We then use the Godunov flux

F0 = f(u*(Uotu)) (2.13)
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as the flux at the wall. Using (2.12) guarantees that there will be no flux of mass or

energy through the wall and hence that the method is conservative.

To define the left and right states at x, we again construct intervals of length h

to either side of this point and average the piecewise constant function defined by U

over these intervals. To the right of x, lies a regular cell of length h and so

U 1 = 1. (2.14)

To the left of x, an interval of length h extends beyond the wall (assuming h' < h).

Beyond the wall we assume that U takes the value u' given by (2.12). A weighted

average of this value and U0 gives u4:

h( 0= (h'Uo + (h- h)~(.5

The flux fi is then defined by

F,= f(u(u',u')). (2.16)

Again, if h' = h this reduces to the standard Godunov flux.

This method remains stable even when h' < h. To see why this should be so,

consider the formula (2.5) for j = 0 where h3 = h'. It is the division by h' that

may cause stability problems unless the fluxes F0 and F1 themselves agree to O(h')

as h' -+ 0. The Godunov fluxes based on (2.9), (2.10) do not have this property.

However, our proposed fluxes (2.13) and (2.16) do have this property, since inspection

of the formulas (2.11), (2.12), (2.14), and (2.15) shows that uf = uo + O(h') and

u0 uR + O(h') as h' - 0. Since the flux function f(u*(u',uR)) is a Lipschitz

continuous function of uL and R, it follows that F, - Fo = O(h') as h' - 0 and there

is at least a chance that the method remains stable for arbitrary h' < h. Numerical

experiments show that this is indeed the case (although it is possible to contrive

examples, such as a strong rarefaction wave originating at this irregularity, where the

results are not very accurate).

3 Boundary conditions in two dimensions

Turning now to the two-dimensional problem, we will give a brief description of how

the idea described above extends to handle the small cell problem.

Consider the portion of the boundary shown in Figure 2a and a typical boundary

cell (i,j). The formula for updating the value U,, is the two-dimensional analog of

(2.5),

U+1= U - -[F+,,j - F, + - G1, + H 3]. (3.17)
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(a) (b) ii

0)0+Fi () Fi+j

Figure 2: (a) The Cartesian grid near the boundary. (b) Blow up of cell (ij) showing
the location of fluxes.

The fluxes F, G, and H represent flux per unit time through the corresponding side

of the grid cell (see Figure 2b) and Ay is the area of the cell. If any of the sides are

missing, the corresponding flux is zero.

On regular grid cells, H~i = 0 and the fluxes F and G might be defined by an

extension of the Godunov method, setting

Fj = 1f(u (Ui 1 j, Uji)), Cj = hg(u"(U,j_., Uj)). (3.18)

Here u" represents the solution to the appropriate one-dimensional Riemann problem

in the x or y direction. Note that the fluxes include the factor h, the length of each

side, to give a flux per unit time across the side.

It is the denominator Aj in (3.17) that causes trouble when the cell is very small.

We again assume the method is stable on the regular portion of the grid, where

A,, = 2 . To maintain stability we need to insure that our formulas for the fluxes

cause the total flux (the sum in brackets in (3.17)) to cancel to O(A.,) as A, --+ 0.

This is only possible if the fluxes are computed via formulas that involve more than

just the two cells bordering the cell side. We take an approach analogous to what we

described above in one dimension.

Boundary fluxes. We begin by considering the boundary segment, where we

must compute the flux H,,. In two dimensions the solid wall boundary condition

requires that the normal velocity at the wall be equal to zero. If we have some value
u. representing the value of u just inside the wall, then we can obtain the flux Hi

by solving a one-dimensional Riemann problem in the direction normal to the wall,

with left and right states

= =
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Figure 3: The inbox and outbox constructed from the boundary segment of cell (i, j),
and the inbox for two neighboring cells.

The reflection operator R is now defined by negating the normal velocity component

while leaving the tangential velocity component along with the density and pressure

unchanged. The resulting Godunov flux is used for Hij.

We obtain u'n by a procedure analogous to the one-dimensional examnple. We

construct a box extending a distance h away from the wall as shown in Figure 3. The

box extending into the computational domain is called inbox(i, J). The mirror image

box outside the domain is called outbox(%*,j). We obtain the value ui2 by viewing

the given data U as defining a piecewise constant function, constat in each grid cell,

and setting u 2 to be the average value of this function over the region inbox(i,j). In

Figure 3 inbox(i,j) would contain an area-weighted average of two grid values while

the value for inbox(i + 1,j) is based on four grid values. We think of the outbox as
containing the value u"' = R 2.

To find the weights needed to compute uln we must compute the intersection of the

inbox with each nearby cell. This is easily accomplished with standard computational

geometry routines. Note that for a given georretry and grid these weights need only

be computed once at the beginning of the computation. They need not be recomputed

in each time step.

Fluxes at other sides. We now consider the fluxes F and G along other sides

of this cell. These are all computed by similar procedures, so to be specific we will

consider the computation of Fij, the flux on the left side of this cell.

To compute Fil we solve two Riemann problems, one in some direction with

some data ut', uf' and the other in the orthogonal direction r/ with data u', u,,.Th

choice of these directions and the data will be discussed in a moment. First we explain

how these Riemann problem solutions are computed and used to define Fij.

Figure 4 shows a typical vertical cell interface and two orthogonal directions and

8
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77

L

F,,

Figure 4: A vertical cell interface and the - and 77-directions.

17. Let 0 be the angle that C is rotated from the z-direction (9 < 0 in this example).

Suppose we solve a one-dimensional Riemann problem in the c-direction with left and

right states ur, uR to obtain the flux per unit length per unit time in the i-direction.

(To do this we rotate the velocity cor ponents of u', uR into -7 velocity components,

solve the one-dimensional Riemann problem, and then rotate the resulting flux f back

to z-y velocity components.) Call this resulting flux f.

Similarly, solving a one-dimensional Riemann problem in the 77-direction with

left and right states u', u' gives fr,, the flux per unit length per unit time in the

77-direction. The total flux across the vertical segment of length h' is then

F = h'(f cos9 - f,7 sin 9). (3.19)

This is the value we use for the flux Fi,.

This same approach has been used by others (e.g., [4], [8], [9]) to define multi-

dimensional upwind methods. In these methods the directions and r, are chosen

based on the local flow in an attempt to use physically meaningful directions in place

of the artificial coordinate directions. For example, the direction of the velocity or

the pressure gradient might be used to define . In our application we are only con-

sidering cells adjacent to the boundary and the relevant directions are the directions

tangential and normal to the wall. We choose to be the direction tangential to the

wall in one of the two cells bordering this interface. Since our primary concern is to

maintain stability in very small cells, we choose the smaller of the two adjacent cells

to define this direction. This will lead to cancellation of fluxes in tiny cells in the

same manner as previously seen in the one-dimensional example. The 77-direction is

normal to the i-direction.

Tangential boxes. We must still specify the data for these tangential and normal

Riemann problems. We first consider the tangential problem. Wc use an approach

9
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....... . . ----

Figure 5: (-) Tangential boxes constructed from the cell interface. (b) Normal boxes
from the cell interface and outbox(i - 1,j).

similar to the specification of data in an inbox described above. ?rom the interface
we construct boxes that extend a distance h in the c-direction. Figure 5a shows an
example. The data u", uR is obtained by an area-weighted average of the values

in each cell the box overlaps. In our current implementation we assume the wall
is convex, so that these boxes lie entirely within the computational domain. Each

box overlaps at most two grid cells and the weights are easily calculated. Since the

directions and 7 and the resulting boxes depend only on the geometry, not on the
flow variables, these weights can again be calculated once and for all as a preprocessing

step.

Normal boxes. Figure 5b shows the normal boxes in the 7-direction. The box

in the outward direction does not hit the boundary and overlaps at most two regular
cells, so u' is calculated as an area-weighted average of these cell values. The other box

may extend beyond the boundary. If so, the portion lying outside the computational
domain lies in one or more outboxes, the artificial cells created in the process of
computing the boundary flux H i described above. Figure 5b shows a simple example

where the normal box intersects only one cell (i - l,j) and outbox(i - 1,j). More

generally the normal box might intersect two cells and their outboxes, as happens

for example when we compute the flux F+,, which involves cells (ij) and (ij - 1).
Moreover the two outboxes will in general overlap due to the convexity of the region.

We again use area-weighted averaging over the four cells in question, weighting the
values Ujj, U,-I, uW* , uj._I by the areas of intersection and then dividing by the
sum of all these areas.

Cancellation. Although we will not present the details here, it can be shown
that this way of defining fluxes leads to the desired cancellation of fluxes in very small

cells. The values u' computed at each of the three sides of a very small triangular

10



cell are nearly the same because of our construction. They differ by ouly O(Ai3 ) as

Aij --+ 0. The same is true of each of the other values uf, u,7, u, and so by Lipschitz

continuity of the fluxes F, G and H we obtain the required cancellation. Numerical
results show stability even when Ai, is many orders of magnitude less than h2 .

Higher order methods The method (3.17) with fluxes (3.18) is only first order

accurate and is highly dissipative. In our previous work we used the wave propagation

boundary conditions together with a high resolution method away from the boundary

and obtained reasonable results (e.g., [1]). The new boundary conditions can also

be applied in conjunction with a high resolution method and gives similar results.

Moreover, with our new formulation it appears to be easier to improve the accuracy

of the boundary conditions, allowing us to obtain higher order accuracy overall. The

main idea is to introduce slopes in each cell and use piecewise linear approximations

in place of piecewise constants to define the fluxes. Near the boundary we can easily

estimate slopes in the tangential direction along the wall by differencing values in the

inboxes that we have defined above.

These improvements are still being investigated and will be reported in detail

elsewhere. Here we will only compare results obtained with the method as we have

described it and results obtained using the same interior method with the wave prop-

agation boundary conditions described in earlier papers.

4 Numerical results

We show one representative test case, a supersonic shock going around an expansion

corner. We also show the steady state solution obtained at large times. The exact

rarefaction wave solution is a simple wave and can be computed following Section

6.17 of Whitham[11], for example.
The geometry we use is the rectangle (0, 1.32] x [0, 0.8] with a solid wall at

= 0.3 _ X< 0.1
y= 0.3(1-(-.1) 2 ) 0.1 < x < 0.7

0.192 - 0.36(x - 0.7) 0.7 < x < 1.32.

The initial conditions consist of a Mach 2.31 shock at z = 0.06 with left and right

states

p' = 5.1432, uf = 2.04511, u' = 0, p' = 9.04545

and

P'= 1.4, u =O, u' = 0, p' = 1.0.

11



() (b)

Figure 6: Shock propagation results at t = 0.4 (a) Using the wave propagation
boundary conditions. (b) Using the new boundary conditions.

We take h = 0.02 (66 x 40 grid) and a time step k = 0.002. This corresponds to a

Courant number of roughly 0.37 relative to the regular cells with area h2 . For the
crude form of Godunov's method used here, the stability restriction requires Courant

number less than 0.5. The smallest cells near the boundary have an area roughly
10- 3 h2.

Figure 6 shows numerical results at time t = 0.4, as the shock is rounding the
corner. Results obtained with the wave propagation boundary conditions are shown
in Figure 6a, while Figure 6b shows the results obtained with our new approach.
These results are very similar. Slight discrepancies can be seen near the wall just
around the shock. For this problem both sets of boundary conditions worked well.

We have also performed tests on other problems where the wave propagation method

shows instabilities and have observed no such difficulties with the new method.

Figure 7 shows the steady state results obtained after many iterations of the time
dependent code (no attempt has been made so far to accelerate convergence for steady

state solutions). We only show the results with our new boundary conditions. The
wave-propagation boundary conditions give very similar results. We use a coarser

grid than in the previous example (h = 0.4) in order to demonstrate that we achieve
reasonable accuracy along the boundary even with a relatively coarse piecewise lin-

ear representation of the boundary. We also use a larger computational domain,

[0, 21 x [0, 1.6] to minimize the impact of the far-field boundaries. The true solution

is a rarefaction wave originating from the portion of the boundary with nonzero cur-

vature. In the exact solution the contour lines would be straight lines. Our results

are contaminated by effects from the far-field boundary.

Near the solid wall the contour lines appear to show a boundary layer. This is an
artifact of the graphics routine, which assumes the data is on a uniform grid at cell

12
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Figure 7: Steady state results. (a) Pressure contours. (b) Pressure along the wall.
The solid line is the exact solution. + marks are the numerical solution.

centers. Our data near the boundary should be viewed as an approximation to the

pointwise value at the center of mass of the irregular cell, not at the center of the full

Cartesian cell.

In order to examine the accuracy at the wall, Figure 7b shows plots of the pressure

along the boundary, plotted against arclength. To obtain a boundary pressure, the

cell value Ui, and the reflected value 7?(Ui) are used to solve the one-dimensional

Piemann problem normal to the wall in each irregular cell. The resulting pressure p"

is used as the boundary pressure. Figure 7b shows these results and also the exact

solution (to machine precision) calculated using the theory of [11].

In more complicated computations we use adaptive grid refinement to obtain high

resolution results with minimal effort. The boundary conditions described here can

also F t used in conjunction with the adaptive Cartesian grid code described in [1]

and [2].
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sations with John Bell and Phil Colella.

13



References

[1] M. BERGER AND R. J. LEVEQUE, An adaptive Cartesian mesh algorithm for

the Euler equations in arbitrary geometries. AIAA paper AIAA-89-1930, 1989.

[2] M. J. BERGER AND P. COLELLA, Local adaptive mesh refinement for shock

hydrodynamics, J. Comput. Phys., 82 (1989), pp. 64-84.

[3] H. H. D. CLARKE AND M. SALAS, Euler calculations for multieliment airfoils

using Cartesian grids. AIAA Paper 85-0291, 1985.

[4] S. F. D AVIS, A rotationally biased upwind difference scheme for the Euler equa-

tions, J. Comput. Phys., 56 (1984), pp. 65-92.

[5] R. J. L , V E Q u E, A large time step generalization of Godunov's method for sys-

ters of conservation laws, SIAM J. Num. Anal., 22 (1985), pp. 1051-1073.

[6] - , Cartesian grid methods for flow in irregular regions, in Num. Meth. Fl.

Dyn. III, K. W. Morton and M. J. Baines, eds., Clarendon Press, 1988, pp. 375-

382.

[7] - , High resolution finite volume methods on arbitrary grids via wave propaga-

tion, J. Comput. Phys., 78 (1988), pp. 36-63.

[8] D. W. LEVY, K. G. POWELL, AND B. VAN LEER, An implementation of a

grid-independent upwind scheme for the Euler equations. AIAA Paper 89-1931-

CP, 1989.

[9] K. G. POWELL AND B. VAN LEER, A genuinely multi-dimensional upwind cell-

vertez scheme for the Euler equations. AIAA Paper 89-0095, Reno, 1989.

[10] B. WEDAN AND J. SOUTH, A method for solving the transonic full-potential

equations for general configurations. Proc. AIAA Computational Fluid Dynamics

Conference, 1983.

[11] G. WHITHAM, Linear and Nonlinear Waves, Wiley-Interscience, 1974.

14



NASA Report Documentation Page
.l ,

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-182048

ICASE Report No. 90-37

4. Title and Subtitle 5. Report Date

May 1990
STABLE BOUNDARY CONDITIONS FOR CARTESIAN

GRID CALCULATIONS 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

M. J. Berger 90-37
R. J. LeVeque

10. Work Unit No.

505-90-21-01
9. Performing Organization Name and Address

Institute for Computer Applications in Science 11. Contract or Grant No.
and Engineering NASI-18605

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration
Langley Research Center 14. Sponsoring Agency Code
Hampton, VA 23665-5225

15. Supplementary Notes To appear inLangley Technical Monitor: T periRichard W. Barnwell Symposium on Computational Technolo-
gy for Flight Vehicles, ed. by
Ahmed Noor, 1990

Final Report

16. Abstract

We solve the inviscid Euler equations in complicated geometries using a
Cartesian grid. This requires solid wall boundary conditions in the irregular
grid cells near the boundary. Since these cells may be orders of magnitude
smaller than the regular grid cells, stability is a primary concern. We present
a new approach to this problem and illustrate its use.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Boundary Conditions, Euler Equations, 64 - Numerical Analysis
Cartesian Grid

Unclassified - Unlimited
19. Security Clasf. lof this report) 20. Security Classf. lof this page) 21. No. of pages 22. Price
Unclassified Unclassified 16 A03

NASA FORM 110 OCT U

NASA-Langle. 190


